2x^2+8-x^2=40

Simple and best practice solution for 2x^2+8-x^2=40 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 2x^2+8-x^2=40 equation:



2x^2+8-x^2=40
We move all terms to the left:
2x^2+8-x^2-(40)=0
We add all the numbers together, and all the variables
x^2-32=0
a = 1; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·1·(-32)
Δ = 128
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{128}=\sqrt{64*2}=\sqrt{64}*\sqrt{2}=8\sqrt{2}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{2}}{2*1}=\frac{0-8\sqrt{2}}{2} =-\frac{8\sqrt{2}}{2} =-4\sqrt{2} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{2}}{2*1}=\frac{0+8\sqrt{2}}{2} =\frac{8\sqrt{2}}{2} =4\sqrt{2} $

See similar equations:

| (x-4)+(4x-17)+(x-9)=180 | | x-0.2x=372 | | 26=6x-5+4x+9 | | 20=80-1.5x | | x/3=1/3+x/6 | | 3x+4(28+3x)=22 | | 21x-17=113.5 | | 6x-15+5x+6=90 | | 6x+5+4x+9=26 | | 6x-26+5x+6=180 | | 7x-5=205 | | 2x-6-(x-2)=5 | | (1/2)x+2=1/4+6 | | 5h/2+15=25 | | 5(x^2+15x=) | | 1/2x+2=1/4+6 | | 4x-x=18+3 | | 9v+3+60=180 | | 4x-x=• | | C+6=18-2(c) | | (x-3)+7=(3x-9 | | -18+u=-7 | | -18+u=-11 | | (√2-y)=(y-√2) | | x-7=3x12 | | (5x+16)92+100+102=180 | | (3x-6)=(3x+75) | | 89+57(5x+16)=180 | | 2/7y=9/28 | | (3+x)^2=3 | | (2y+56)-6=45 | | 10n+4=84,n= |

Equations solver categories